In vitro removal of toxic heavy metals by poly(γ-glutamic acid)-coated superparamagnetic nanoparticles

نویسندگان

  • Baskaran Stephen Inbaraj
  • Bing-Huei Chen
چکیده

BACKGROUND Chelation therapy involving organic chelators for treatment of heavy metal intoxication can cause cardiac arrest, kidney overload, mineral deficiency, and anemia. METHODS In this study, superparamagnetic iron oxide nanoparticles (SPIONs) modified with an edible biopolymer poly(γ-glutamic acid) (PGA) were synthesized by coprecipitation method, characterized and evaluated for their removal efficiency of heavy metals from a metal solution, and simulated gastrointestinal fluid (SGIF). RESULTS Instrumental characterization of bare- and PGA-SPIONs revealed 7% coating of PGA on SPIONs with a spherical shape and an iron oxide spinel structure belonging to magnetite. The particle sizes as determined from transmission electron microscopy images were 8.5 and 11.7 nm for bare- and PGA-SPIONs, respectively, while the magnetization values were 70.3 and 61.5 emu/g. Upon coating with PGA, the zeta potentials were shifted from positive to negative at most of the environmental pH (3-8) and biological pH (1-8), implying good dispersion in aqueous suspension and favorable conditions for heavy metal removal. Batch studies showed rapid removal of lead and cadmium with the kinetic rates estimated by pseudo-second-order model being 0.212 and 0.424 g/mg · min, respectively. A maximum removal occurred in the pH range 4-8 in deionized water and 5-8 in SGIF corresponding to most gastrointestinal pH except for the stomach. Addition of different ionic strengths (0.001-1 M sodium acetate) and essential metals (Cu, Fe, Zn, Mg, Ca, and K) did not show any marked influence on lead removal by PGA-SPIONs, but significantly reduced the binding of cadmium. Compared to deionized water, the lead removal from SGIF was high at all pH with the Langmuir monolayer removal capacity being 98.70 mg/g for the former and 147.71 mg/g for the latter. However, a lower cadmium removal capacity was shown for SGIF (23.15 mg/g) than for deionized water (31.13 mg/g). CONCLUSION These results suggest that PGA-SPIONs could be used as a metal chelator for clinical treatment of metal poisoning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Removal of Mercury (II) from Wastewater by Magnetic Solid Phase Extraction with Polyethylene Glycol (PEG)-Coated Fe3O4 Nanoparticles

   The presented study investigates application of polyethylene glycol (PEG)-coated Fe3O4 nanoparticles as an magnetic nanoadsorbent for magnetic solid-phase extraction (SPE) and the selective removal of toxic heavy metals such as mercury (II) from aqueous solutions and their determination using graphite furnace atomic absorption spectrometry (GF-AAS)...

متن کامل

Using poly-glutamic acid as soil-washing agent to remediate heavy metal-contaminated soils.

The extraction efficiency of heavy metals from soils using three forms of gamma poly-glutamic acid (γ-PGA) as the washing agents was investigated. Controlling factors including agent concentrations, extraction time, pH, and liquid to soil ratio were evaluated to determine the optimum operational conditions. The distribution of heavy metal species in soils before and after extraction processes w...

متن کامل

Design, Optimization Process and Efficient Analysis for Preparation of Copolymer-Coated Superparamagnetic Nanoparticles

Magnetic nanoparticles (MNPs) are very important systems with potential use in drug delivery systems, ferrofluids, and effluent treatment. In many situations, such as in biomedical applications, it is necessary to cover inorganic magnetic particles with an organic material, such as polymers. A superparamagnetic nanocomposite Fe3O4/poly(maleic anhydride-co-acrylic acid) P(MAH-co-AA) with a core/...

متن کامل

Selective Removal of Lead (II) Ion from Wastewater Using Superparamagnetic Monodispersed Iron Oxide (Fe3O4) Nanoparticles as a Effective Adsorbent

This study investigated the applicability of polyethylene glycol (PEG-4000) coated Fe3O4 magnetic nanoparticles for the selective removal of toxic pb (II) ion from wastewater. The Fe3O4 magnetic nanoparticles of 24 nm were synthesized using a coprecipitation method and characterized by Scanning electron microscopy (SEM), vibratingsample magnetometer (VSM), and X-ray diffraction (XRD). SEM image...

متن کامل

Adsorption Study of Heavy Metals ‎Removal from Wastewater Using PVA- ‎Nano Ferrite Composites

   The aim of the present investigation is to synthesize Barium ferrite and Nickel ferrite Nanoparticles by co-precipitation method and these nanoparticles are used to prepare nanocomposites with poly vinyl alcohol (PVA). The composited nanoparticles are characterized by using FTIR, XRD and SEM. The synthesized nanoparticles are used as adsorbent to remove the heavy metals such as Cu2+...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2012